
Strategies for executing federated queries in
SPARQL1.1

Carlos Buil-Aranda1?, Axel Polleres2??, and Jürgen Umbrich2

1 Department of Computer Science, Pontificia Universidad Católica, Chile
cbuil@ing.puc.cl

2 Vienna University of Economy and Business (WU)
{first.last}@wu.ac.at

Abstract A common way for exposing RDF data on the Web is by means of
SPARQL endpoints which allow end users and applications to query just the
RDF data they want. However, servers hosting SPARQL endpoints often restrict
access to the data by limiting the amount of results returned per query or the
amount of queries per time that a client may issue. As this may affect query
completeness when using SPARQL1.1’s federated query extension, we analysed
different strategies to implement federated queries with the goal to circumvent
endpoint limits. We show that some seemingly intuitive methods for decompos-
ing federated queries provide unsound results in the general case, and provide
fixes or discuss under which restrictions these recipes are still applicable. Finally,
we evaluate the proposed strategies for checking their feasibility in practice.

1 Introduction

The Linked Open Data initiative promotes the publication and linkage of RDF data
on the Web. Under this initiative many organisations (either public or private) expose
billions of statements using the RDF data model and also provide links to other RDF
datasets. A common way for accessing such RDF datasets is by means of SPARQL
endpoints. These endpoints are Web services that implement the SPARQL protocol and
then allow end users and applications to query just the RDF data they want. However,
servers hosting SPARQL endpoints often restrict the access to the data by limiting the
server resources available per received query and client. These physical resource limi-
tations most commonly include restrictions of the size of result set returned to the end
users (e.g., a 10.000 result limit for each query) or simply generating errors such as time
outs on queries that spend too many resources. Such imposed limitations are necessary
due to too many resource limits [2] when serving queries concurrently to many clients.

However, in practice, particularly in the context of using SPARQL1.1’s Federated
Query Extension [9], these limitations prevent users from obtaining complete answers
to their SPARQL queries. The result set size limitation is particularly relevant when a
user wants to federate SPARQL queries over a number of SPARQL endpoints.

? Supported by the Millennium Nucleus Center for Semantic Web Research under Grant
NC120004 and CONICYT/FONDECYT project 3130617.

?? Supported by the Vienna Science and Technology Fund (WWTF) project ICT12-015.

Using different combinations of SPARQL patterns is possible to overcome the
servers’ result size limits and obtain complete result sets for SERVICE queries. A
common pattern that can be used for that purpose is using the VALUES operator from
the new SPARQL 1.1 Recommendation. This operator allows to “ship” the results from
a local query to be joined with a remote pattern along with the service query. How-
ever this operator is still not widely implemented in currently deployed endpoints [2]
and thus alternative options might have to be considered. After some preliminaries (§2)
this paper presents a study of several alternative strategies (§3), allowing users to obtain
sound and complete answers to SPARQL queries; for instance, we show that using naive
nested loops or combinations of the UNION and FILTER operators for constraining
remote queries may return unsound results; we further discuss how to fix these naive
approaches to obtain correct results. Finally in §4+5 we evaluate different settings, de-
pending on the data, the local SPARQL engine and the engine running at the involved
remote endpoints in a federated query, before we conclude in § 6.

2 Preliminaries

We first describe the basics of the SPARQL syntax we will use thorough the paper
followed by the semantics of the most relevant SPARQL operators used.1

Syntax. The official syntax of SPARQL1.1 [3] considers operators OPTIONAL,
UNION, FILTER, SELECT, concatenation via a point symbol (.), { } to group pat-
terns, as well as keywords (new in SPARQL 1.1) SERVICE to delegate parts of a query
to a remote endpoint, and VALUES to define sets of variable bindings.

We follow [1,8] for defining the SPARQL syntax operators including the VALUES
and SERVICE operators. We use letterB,I ,L,V for denoting the (infinite) sets of blank
nodes, IRIs, RDF literals, and variables as usual.2

(1) A triple (I ∪ L ∪ V)× (I ∪ V)× (I ∪ L ∪ V) is a graph pattern (a triple pattern).
(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),

and (P1 UNION P2) are graph patterns.3

(3) If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.

(4) IfP is a graph pattern, then SELECT W P ORDER BY V LIMIT l OFFSET o
is a graph pattern (subquery), where ORDER BY, LIMIT, and OFFSET clauses
(aka solution modifiers) are optional, W ,V are sets of variables, and l, o ∈ N.4

(5) If P is a graph pattern and a ∈ (I ∪ V), then (SERVICE a P) is a graph pattern.

1 Note that we assume a set-based semantics as in [8] here, i.e. implicitly we assume DISTINCT
queries. We also used DISTINCT queries in our experiments.

2 In SPARQL patterns, blank nodes and variables can be used interchangeably, which is why we
ignore blank nodes in SPARQL patterns.

3 AND is syntactically written as either a sequence of ‘{ }’-delimited group graph patterns, or
a sequence of ‘.’-separated triple patterns.

4 We simplify here, as general ORDER BY clauses in SPARQL allow arbitratry expressions.

(6) VALUES WA is a graph pattern where W = [?X1, . . . , ?Xn] is a sequence of
pairwise distinct variables, and

A =


a1,1, . . . , a1,n
a2,1, . . . , a2,n

...
am,1, . . . , am,n


is a matrix of values where ai,j ∈ (I ∪ L ∪ {UNBOUND}).
For the exposition of this paper, we leave out further more complex graph patterns

such as GRAPH graph patterns, or new SPARQL 1.1 [3] like aggregates and property
paths. We will use the notion of FILTER expressions as defined in [8]. We also
use unary predicates like bound, isBlank, and the binary equality predicate ‘=’, which
herein we consider as synonym for sameTerm(·, ·) from [3].5

Let P be a graph pattern; in what follows, we use var(P) to denote the set of
variables occurring in P . In particular, if t is a triple pattern, then var(t) denotes the set
of variables occurring in the components of t. Similarly, for a built-in condition R, we
use var(R) to denote the set of variables occurring in R.

Semantics. As in [8], we consider a set-based semantics (which can always be achieved
in SPARQL using the keyword DISTINCT), since conjunctive query containment is
already undecidable for bag-semantics [4].

We use terminology defined in [8] for compatibility between solution mappings,
written µ1 ∼ µ2. Let Ω1 and Ω2 be sets of mappings; the join , union, difference, and
left outer-join operations for Ω1 and Ω2 are defined as follows:

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1,

µ2 ∈ Ω2 and µ1 ∼ µ2},
Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},
Ω1 rΩ2 = {µ ∈ Ω1 | ∀µ′ ∈ Ω2 : µ 6∼ µ′},

Ω1 ./@ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 rΩ2).

As usual, we use dom(µ) for denoting the variables bound within – i.e. the domain
of – a SPARQL solution mapping µ. The evaluation semantics of SPARQL patterns
with respect to an RDF graph G is defined in Fig. 1.

The evaluation of a FILTER expressionR wrt. solution mapping µ relies on a three-
valued logic (>,⊥, ε), cf. [3, §17.2], where
µ(R) = >, if:

- R is bound(?X) and ?X ∈ dom(µ);
- R is isBlank(?X), ?X ∈ dom(µ) and µ(?X) ∈ B;
- R is isIRI(?X), ?X ∈ dom(µ) and µ(?X) ∈ I;
- R is isLiteral(?X), ?X ∈ dom(µ) and µ(?X) ∈ L;

5 Note that ‘=’ would otherwise also involve certain datatype inferences,
e.g. "1.0"ˆˆxsd:decimal="1"ˆˆxsd:integer in SPARQL, whereas
sameTerm("1.0"ˆˆxsd:decimal, "1"ˆˆxsd:integer) = false.

- R is ?X = c, ?X ∈ dom(µ) and sameTerm(µ(?X), c);
- R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and sameTerm(µ(?X), µ(?Y));
- R is ¬R1 with µ(R1) = ⊥;
- R is (R1 ∨R2), and µ(R1) = > ∨ µ(R2) = >;
- R is (R1 ∧R2), and µ(R1) = > ∧ µ(R2) = >

µ(R) = ε, if:
- R is isBlank(?X),R = isIRI(?X), or R = isLiteral(?X) and ?X 6∈ dom(µ);
- R is ?X = c or ?X =?Y with ?X 6∈ dom(µ) or, in the latter case ?Y 6∈ dom(µ);
- R is ¬R1 with µ(R1) = ε;
- R is (R1 ∨R2), and µ(R1) = ε ∧ µ(R2) = ε;
- R is (R1 ∧R2), and µ(R1) = ε ∨ µ(R2) = ε

µ(R) = ⊥, otherwise.

(1) If P is a triple pattern t, then JP KG = {µ | dom(µ) = var(t) and µ(t) ∈ G}.
(2) If P is (P1 AND P2), then JP KG = JP1KG ./ JP2KG.
(3) If P is (P1 OPT P2), then JP KG = JP1KG ./@ JP2KG.
(4) If P is (P1 UNION P2), then JP KG = JP1KG ∪ JP2KG.
(5) If P is (P1 FILTER R), then JP KG = {µ ∈ JP1KG | µ(R)}.
(6) If P is (SERVICE c P1) with c ∈ I ∪ V , then

JP KG =


JP1Kep(c) if c ∈ dom(ep)

{µ∅} if c ∈ I \ dom(ep){
µ ∪ [c→ s] | ∃s ∈ dom(ep), µ ∈ JP1Kep(s)) ∧ [c→ s] ∼ µ

}
if c ∈ V

(7) If P = VALUES W A then

JP KG = {µj |1 ≤ j ≤ m, dom(µj) = {?Xi ∈W | ai,j 6= UNBOUND}, µj(?Xi) = ai,j}

(8) If P is SELECT W P1 ORDER BY V LIMIT l OFFSET o, then
JP KG = ΠW (lmt(order(JP1KG,V), l, o)), where ΠW is projection as in Rel. Alg., and
order(Ω,V) = L the sequence of µ ∈ Ω obtained from ordering µ(V) as per [3, §15.1].
lmt(L, l, o) = L′ obtained from Lby removing all L[i] with i ≤ o or o+ l < i

Figure 1. Definition of JP KG for a graph pattern P using FILTER and VALUES operators.

Note in Fig. 1, that the semantics of SELECT queries is actually non-deterministic,
in the sense that a compliant implementation can give different results, as illustrated by
the following example.

Example 1. Let us assume the default graph G1 = {(a, b, 1), (a, b, 2)}. and the pat-
tern P1 = SELECT ?X(a, b, ?X) LIMIT 1 then obviously both {[?X → 1]} and
{[?X → 2]} would be allowed results, since there is no order prescribed among the re-
sults of J(a, b, ?X)KG. Likewise, P2 = SELECT ?X(a, b, ?X) LIMIT 1 OFFSET 1
could have the same two possible results, indeed a compliant SPARQL engine could –
according to the specification return the same result for both P1 and P2.

Note that even an ORDER BY does not necessarily remedy such ambiguities in
all cases, since, according to the ordering rules in [3, §15.1], not all RDF terms are or-

dered; particularly, no order is specified for instance for blank nodes. To illustrate this,
assume the default graph G1 = {(a, b, :b1), (a, b, :b2)} such that :b1, :b2 ∈ B.
Then, similarly, both {[?X → :b1]} and {[?X → :b2]} would be allowed re-
sults for either P3 = SELECT ?X(a, b, ?X) ORDER BY ?X LIMIT 1 or P4 =
SELECT ?X(a, b, ?X) ORDER BY ?X LIMIT 1 OFFSET 1.

3 Evaluation Strategies for SPARQL SERVICE patterns

In this section we outline several potential evaluation strategies for queries
to a remote SPARQL endpoint using SERVICE patterns of the form P =
P1 AND (SERVICE c P2).

Symmetrical Hash Join (SYMHASH) A classical alternative to implement SERVICE
patterns is to use a symmetrical hash join, a type of hash join commonly used in data
streams. We evaluate both query parts P1 and P2 separately and locally join the results
(JP KG = JP1KG ./ JP2KGc

) using two hash tables (one for each sub query). Depending
on the interim result sizes of P1 and P2, this join algorithm can be a very efficient solu-
tion due to its possible parallelisation. However, the symmetrical hash join is expensive
if the interim result sets are much larger then the join result size, plus, particularly, if
the remote endpoint c imposes a result size limit of n being smaller than the size of
JP2KGc , then join results may be lost.

Pagination with ORDERBY and LIMIT (SYMHASHP) An alternative to circum-
vent the problems of a local symmetric hash join would be to use “pagination”. Here, by
“pagination” we mean issuing queries of the form P1 AND (SERVICE c (SELECT ∗
{P2}ORDER BY inScopeV ars(P2)) LIMIT n OFFSET o) where o = n ∗ i with
increasing i ∈ N until less than n results are returned from service c. Each batch of
remote results can again be joined with the local results of P1 using a hash join.

However, Ex. 1 above already shows that there is no simple work-around for cir-
cumventing result size limits when querying remote SPARQL endpoints in terms of
“pagination”: that is, let us assume P = P1 AND (SERVICE c P2) be a SPARQL
pattern, where service c limits result size to delivering at most n results. Then, as a con-
sequence of the Ex. 1, one cannot simply use “pagination” of the results of the remote
endpoint.

Getting back to the ordering rules in [3, §15.1], we note that there are still cases
where we can safely use pagination, namely, (1) if the total result size of the remote
endpoint query is below the remote result size limit n, then there are no problems. This
can be easily checked by issuing a query ASK { SERVICE c { SELECT * { P2

} LIMIT n }} to the remote endpoint. In case this delivers less than n results, we
do not need pagination anyway. Otherwise, we have to check whether we can safely
order the results to guarantee that we can get all available results by “pagination”. To
this end, we need to be sure that all bindings to “output variables” (i.e., variables that
are “in-scope” 6) in the service pattern P2 are either unbound or can be ordered by the

6 these are just the variables that would be included in a SELECT *, cf.
http://www.w3.org/TR/sparql11-query/#ins

”<” operator according to [3, §15.1]: the ”<” operator (see [3, §17.3.1] Operator Ex-
tensibility) defines the relative order of pairs of numerics, simple literals, xsd:strings,
xsd:booleans and xsd:dateTimes. Pairs of IRIs are ordered by comparing them as sim-
ple literals. In fact, we can check this “orderability” condition — which would allow
us to impose a total order on the in-scope variables of the service pattern by using
ORDER BY — by another ASK query:7

ASK { SERVICE c { P2 FILTER (! (∧
for each variable ?v ∈ inScopeV ars(P2)

(!bound(?v) ∨
isNumeric(?v) ∨
datatype(?v) = xsd:boolean ∨
datatype(?v) = xsd:dateTime ∨
datatype(?v) = xsd:string))) } }

If this query returns false, the remote results can be indeed ordered, and we can
proceed with “pagination”. However, while this approach is feasible, it is not applicable
in general, plus executing several consecutive ORDER BY queries might actually be
quite expensive on the remote side and trigger resource limits nonetheless. We thus look
for other, more feasible alternatives, that allow to “push” the results from the local side
into the remote query, which we will describe in the following.

Nested Loop Join (NESTED) A straightforward method to alternatively evaluate a
query of the form P = P1 SERVICE c P2 – with the particular advantage to keep the
intermediate size of results shipped from the remote endpoint low, and thus potentially
circumventing result size limits – is to use a nested loop join. Here, we first evaluate
P1, iterate over the solution bindings µ ∈ JP1KG, execute µ(P2) remotely and extend µ
with the additionally obtained variable bindings.

One potential problem of this approach is that we issue one request for each binding
of P1; this can lead to denial of service attacks if there is no appropriate wait time
between two requests for large interim result sets.

Even worse, when done naively, this method fails in relatively simple queries as
shown in the following example.

Example 2. Assume P1 = (?X, c, d) and P2 = ((?Y, ?Z, ?T) UNION (?X, ?Y, b))
FILTER (?X = ?Y). With the local default graph G1 = {(a, c, d)} and the remote
service’s default graph G2 = {(a, a, b), (e, c, d)}, we obtain: JP1KG1

= {µ}, with
µ = {[?X → a], whereas JP2KG2

= {[?X → a, ?Y → a]}. However, if we proceed as
suggested above, then µ(P2) = ((?Y, ?Z, ?T) UNION (a, ?Y, b)) FILTER (a =?Y)
which yields an additional solution [?Y → a, ?Z → a, ?T → b] that was not admissible
in the original P2 but is also compatible with {[?X → a]}.

Another problem is with blank nodes. Assume P1 = P2 = (?X, c, d) with
G1 = {(: b, c, d)} and G2 = {(a, c, d)}. Here, as replacement would yield µ(P2) =
(: b, c, d) and since SPARQL engines treat blank nodes in patterns as variables, again
a non-admissible solution would arise.

7 Note that the datatype(·) function also returns xsd:string on simple literals.

Thus, applying a nested loop join with naive replacement in a federation scenario,
would potentially obtain inconsistent results.

SPARQL 1.1 VALUES operator (VALUES). As a further alternative, the new
VALUES operator in SPARQL 1.1 can be used for “shipping” the local result bindings
from JP1KG along with the remote query that is sent using the SERVICE operator
as follows: let again P = P1 AND (SERVICE c P2). If we pre-evaluate the solution
bindings for P1, written JP1KG, the SERVICE operator could then be equivalently
evaluated by replacing pattern P2 with

P
VALUESP1
2 = P2 VALUESWA

where W = [var(P1)∩var(P2)] and A = JP1KG to endpoint c, i.e. ifGc is the default
graph of service c

JP KG = JP1KG ./ JPVALUESP1
2 KGc

However, a potential problem with this approach is that the VALUES operator is
not yet widely deployed in existing endpoints [2] and other operators have to be used in
order to simulate the desired behaviour.
SPARQL FILTER (FILTER) As an alternative to the usage of VALUES one may
consider using FILTERs to “inject” the results of P1 into P2, namely, by replacing P2

with

P
FILTERP1
2 = {P2 FILTER

∨
µ∈JP1KG

(
∧

v∈dom(µ)∩vars(P2)

v = µ(v))}

The FILTER expression here makes sure that only those solution bindings of P2

survive that join with some solution binding of of P2.
SPARQL UNION (UNION). Yet another alternative is the use of the UNION oper-
ator in combination with FILTERs. Here, the idea is to use the results of P1 to create
a large UNION query, where in each branch of the UNION the bindings of one
solution for P1 are ‘injected” by means of a FILTER, instead of one large FILTER.
I.e., for JP1KG = {µ1, . . . , µn} we replace P2 by

P
UNIONP1
2 = {(µFILTER

1 (P2))UNION . . .UNION(µFILTER
n (P2))}

Here, µFILTER(P2) = P2 FILTER(
∧
v∈dom(µ)∩vars(P2)

v = µ(v)).

However, there are problems with unbound variables in both P
FILTERP1
2 and

P
UNIONP1
2 , as shown in the following example.

Example 3. Assume P1 = (?X, b, c), c = I and P2 = ((?Y,d,e) UNION (?X,d,e)). With
the local default graph G1 = {(a, b, c)} and the remote service’ default graph G2 =
{(a, d, e)}, we obtain: JP1KG1 = {[?X → a]} and JP2KG2 = {[?X → a], [?Y → a]};
here, the second solution for JP2KG2

, i.e. µ2 = [?Y → a] is compatible with the single
solution for JP1KG1

, i.e., µ1 = [?Y → a] yielding overall µ = [?X → a, ?Y → a].
However, PFILTERP1

2 = P
UNIONP1
2 ={ {(?Y,d,e) UNION (?X,d,e)} FILTER(?X =

a)} which would not yield µ as a solution.

So, while the use of nested loops may yield incorrect additional results, the version
using FILTER and UNIONs seem to miss some results,. In the next subsection we
discuss refined versions of these three alternatives, that solve these issues.

3.1 Two Equivalence theorems for SPARQL Federated Queries

As we have seen, some queries may return unexpected result mappings when substi-
tuting a variable for a specific value in nested loops. Thus, we aim at finding out a
restricted class of SPARQL remote queries for which we obtain correct results. It turns
out that one class of queries which avoid the above-mentioned problems is the class of
queries where all join variables are strongly bound[1]: strong boundedness ensures, by
the following syntactic restrictions, that a variable ?X in a SPARQL pattern P will be
bound to a value in each solution binding, independent of the underlying data.

Definition 1 (Strong boundedness (from [1]). Let P be a SPARQL pattern; the set of
strongly bound variables in P , denoted by SB(P), is recursively defined as follows:

– if P = t, where t is a triple pattern, then SB(P) = var(t);
– if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2);
– if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2);
– if P = (P1 OPT P2) or P = (P1 FILTER R), then SB(P) = SB(P1);
– if P = (P1 FILTER R), then SB(P) = SB(P1);
– if P = (SERVICE c P1), with c ∈ I , or P = (SERVICE ?X P1), with ?X ∈ V ,

then SB(P) = ∅;
– if P = (P1 VALUES S {A1, . . . , An}), then SB(P) = SB(P1) ∪ {?X |
?X is in S and for every i ∈ {1, . . . , n}, it holds that ?X ∈ dom(µS,Ai)}.

– if P = (SELECT W P1), then SB(P) = (W ∩ SB(P1)).

Indeed, one source of problems in Ex. 2 was the query results containing the empty
result mapping. That empty result mapping combined with other operators generates
result sets different to the original one (aside of being unexpected) since the empty
result mapping is not null rejecting.

The following Lemma essentially states that replacing strongly bound variables with
IRIs or literals in a pattern will not yield additional results for P .

Lemma 1. Given a SPARQL pattern P with v ∈ SB(P), let µe = [v → e] for an
e ∈ I ∪ L, then Jµe(P)KG ./ µe = {µ ∈ JP KG|v ∈ dom(µ) ∧ µ(v) = e}.

Indeed, we can remedy the aforementioned issue of blank nodes if we replace µ(P2)
with µB(P2) = {µ(P2) FILTER(¬(

∨
v∈dom(µ)∩vars(P2)

isBlank(µ(v))))} within
the nested loop, i.e. the problematic solutions containing blank nodes are filtered out.

Indeed, we confirm that nested loop replacement with this modification works for
remote patterns with only strongly bound variables; plus, it turns out that remote queries
with only strongly bound join variables also are evaluated correctly using the FILTER
and UNION approaches:

Theorem 1. Let P = P1 AND (SERVICE c P2) such that (vars(P2)∩ vars(P1)) ⊆
SB(P2), i.e. all variables that participate in a join are strongly bound in the pattern
appearing on the service side, and let Gc be the default graph of service c and let
P

UNIONP1
2 and PFILTERP1

2 be as defined above, then

(i) JP KG =
⋃
µ∈JP1KG(µ ./ JµB(P2)KGc

)

(ii) JP KG = JP1KG ./ JPUNIONP1
2 KGc

= JP1KG ./ JPFILTERP1
2 KGc

We note that if the local graph G does not contain any blank nodes8, then Theorem
1(i) would also hold using the original replacement µ(P2). Moreover, it turns out that
we can generalise the result in Theorem 1(ii) to also work in the general case with
potentially unbound variables in the service pattern. To this end, in both PFILTERP1

2

and PUNIONP1
2 expressions we replace v = µ(v) by v = µ(v) ∨ ¬bound(v), obtaining

P
FILTER′

P1
2 and P

UNION′
P1

2 , resp.
The trick to only filter for variables bound within P2 fixes the problem from Ex. 3

above, as stated in the following theorem.

Theorem 2. Let P = P1 AND (SERVICE c P2) and Gc be the default graph of
service c then

JP KG = JP1KG ./ JP
FILTER′

P1
2 KGc = JP1KG ./ JP

UNION′
P1

2 KGc

4 Evaluation

In total, we have 6 alternative evaluation strategies for a P = P1 SERVICEP2 query,
as listed in the overview given in Table 1. The goal of our evaluation is to study how sys-
tems implement the SERVICE keyword and how the alternative evaluation strategies
behave for different queries.

Table 1. Overview of evaluation strategies as detailed in §3.

ID Description
SERVICE Baseline evaluation strategy
VALUES Evaluation as described in §3
SYMHASH A symmetrical hash join without pagination
SYMHASHP A symmetrical hash join with pagination of the remote results
NESTED A naive nested loop evaluation strategy
UNION Evaluation as described in Theorem 1
FILTER Evaluation as described in Theorem 2

All of our evaluation strategies are implemented in Java7 using the Jena ARQ library
(version 2.9.4)9. The three systems under test are 1) Jena Fuseki 0.2.7 with on disk index
(TDB), 2) Sesame workbench 2.7.11 and 3) Virtuoso Open Source Edition 7.10.

We did not pose any result limit to the systems and followed the official documen-
tation for the installation.

8 Existence of blank nodes in a dataset could be easily tested with a query such as ASK {?S
?P ?O FILTER isBlank(?S) ∨ isBlank(?O)) }.

9 The implementation and all queries are online at https://github.com/cbuil/sparql strategies

4.1 Methodology

The methodology followed in our evaluation consists in two parts: first we evaluate the
correctness of our strategies by using the data and queries presented in §3.1 and next
we evaluate the strategies using real data from the Bio2RDF project10.

SERVICE implementation test
First, we test the implementation of the selected SPARQL HTTP servers and how they
deal with the problems addressed in this work. We created two small datasets that con-
tain the RDF data in the examples before. Next we evaluate each of the strategies pre-
sented using these datasets to check the correctness of our approach and the engines
serving SPARQL.

Compare alternative strategies
Next, we verify that all strategies can produce the right results if 1) the queries do
not involve unbound join variables and 2) if the queries contain variables that may be
unbound. We remove the result set size limit that the servers usually impose to the query
execution. We also use this test to measure the performance differences of the strategies
depending on the query characteristics and we also test how the symmetrical hash joins
perform with and without pagination. We measured for each configuration of query and
join implementation result size, and query times.

4.2 Data & Queries

SERVICE evaluation: we use the data and queries from Examples 2 and 3 to test the
SERVICE implementation of the different stores. These two queries are used to check
how unbound variables affect the execution of a federated SPARQL query. The first
query Q1 contains the UNION pattern presented in Example 2 in P1 (i.e. the pattern
that queries the local dataset). The second query Q2 is the query presented in Example
3. That query contains a single graph pattern for querying the local dataset (P1) and the
previous UNION pattern in the remote SERVICE call (P2).

In addition, we downloaded two datasets from the Bio2RDF domain: the Mouse
Genome Database (MGI) and the Database of Human Gene Names (HGNC). The MGI
dataset consists of 2,454,589 triples and the HGNC of 919,738 triples and we created 8
queries for these two datasets. Each query has two SERVICE patterns P1 and P2, the
first one (P1) querying the local endpoint hosting the MGI dataset and the second (P2)
querying the remote endpoint, hosting the HGNC data.

The first 4 queries (B0– B3) plus query B7 do not contain blank nodes in the interim
results or unbound join variables while queries B4– B6 contain variables that may be
unbound. These three queries will allow us to study the behaviour of the proposed
strategies with unbound join variables. The results obtained for these last queries may
be unsound, i.e. they differ in the amount of results returned to the users, according to
the theoretical results presented in Section 3.

10 http://bio2rdf.org

Table 2. Result size of P1 (local) and P2 (remote) for our example queries. |P | is the result size
of executing first P1, next P2 and finally do the join locally.

Cardinality #Triple patterns
Query JP1KG JP2KG |P1| |P2| |P | Comment

B0 27 1 1 1 1
B1 27 33562 1 1 1
B2 17817 33562 2 1 17547
B3 16753 2 2 3 2
B4 250924 23 1 2 6 P1 contains one non strongly bound join variable
B5 16753 8771 2 2 3274 P2 contains one non strongly bound join variable
B6 268743 27132 3 7 23873 P1 and P2 with non strongly bound join variable
B7 35636 33134 3 4 17545 Two join variables

5 Results

In this section we summarise the results we obtained from the execution of the proposed
strategies using the evaluation queries for each dataset configuration. We first present
the results of the strategies over the data and queries of §4 and next we present the
results for the Bio2RDF dataset queries.

5.1 SERVICE implementation test

At the time of writing, we initially tested the current version of Fuseki (version 1.0.1)
but due to a bug in the evaluation of FILTER expression we had to settle for a previous
version not containing that error. This behaviour could be not observed with Fuseki
version 0.2.7 which returned the correct results.

Overall, our evaluation confirmed that the SPARQL engines do not properly deal
with unbound join variables for their SERVICE implementation. Table 3 shows the
number of returned results for our two queries and the three tested systems. We ob-
serve that for all queries the FILTER, UNION and symmetrical hash join strategies
returns the correct number of results in Sesame and Virtuoso. Considering Fuseki, all
evaluation strategies fail to return the correct results except for in the symmetrical hash
join strategy. We contacted the lead developer of the Fuseki system to verified that the
SERVICE evaluation strategy is similar to a nested loop approach as the results indi-
cated. Interestingly, Fuseki does not differ from Sesame and Virtuoso in the execution
of SERVICE queries since they all return the same amount of results. That means that
all three systems seem to implement a Nested Loop Join algorithm for implementing
the SERVICE operator.

5.2 Performance of alternative strategies

The next evaluation task had the goal to see how the different strategies behave with
real world data and different queries.

Table 3. Returned amount of results for theorem queries and synthetical data for different
SPARQL engines: the table shows result size differences in the query evaluation for the different
strategies by the SPARQL servers.

Q1 (Example2) Q2 (Example3)
Fuseki Sesame Virtuoso Fuseki Sesame Virtuoso

SERVICE 2 2 2 2 2 2
VALUES 2 1 1 2 2 2
FILTER 2 1 1 2 1 1
UNION 2 1 1 2 1 1
NESTED 2 2 2 2 2 2
SYMHASH 1 1 1 1 1 1

Implementation restrictions & solution In our initial tests we observed two technical
exceptions with the used systems and libraries.
HTTP GET vs HTTP POST queries: At first, we used HTTP GET requests to send

the queries to the local and remote endpoints. However, the servers threw an exception
if the created query URL exceeds the maximum or allowed URL length. This happened
for queries with thousands of interim results for P1. Our solution is to use HTTP POST
requests with the query in the request body.
Large FILTER and UNION expressions: The second exception happened due to in-

ternal stack overflows in the ARQ library while parsing the FILTER (or UNION ex-
pression, caused by large numbers of filter statements for P2. We mark such exception
with a “+”. Our technical solution for these exception is to split the results for P1 into
batches which can be handled by the remote endpoint. If such an exception occurred in
our test we also evaluate the strategy with batch processing.

Results The runtime in ms for the various strategies and queries are presented in Table 4
for Fuseki, Table 5 for Sesame and Table 6 for Virtuoso. We use the superscript “−”
to indicate an incorrect number of results. Results marked with superscript “*” indi-
cate a 500 Server Error response error from Fuseki, 400 Bad Request from
Sesame11 or HttpException from Virtuoso. These errors indicate that a problem
occurred in the server while the processing of the query was ongoing. In such cases,
we report the times taken from a run with a batch size of 750 results. In this evaluation
we use the symmetrical hash join with pagination strategy (SYMHASHP) with a batch
size of 750 instead of the SYMHASH strategy since the former is more suitable for
queries with larger amounts of results. Those queries that have as result to mean that
were automatically stopped from the client after 30 minutes. The bold results present
the best runtime for each query across the strategies.

Overall the FILTER and VALUES evaluation strategies provide in general the
fastest query times for Fuseki (cf. Table 4). We can also see that the internal SERVICE
evaluation strategy has similar runtimes as our nested loop implementation. This is no
surprise since Fuseki uses a nested loop style evaluation strategy. The UNION strategy

11 Sesame’s 400 Bad Request errors indicate that the query contained to many patterns.

Table 4. Query times in ms (Fuseki 0.2.7). The best strategy for a Fuseki server is to either use a
FILTER strategy injecting the values in the FILTER expression or use the VALUES operator.
The SYMHASHP is the third best strategy.

B0 B1 B2 B3 B4 B5 B6 B7

SERVICE 1436 642 31620 39119 62243∗ 858681− 60276∗ to
FILTER 439 360+ 7235+ 6022+ 13633+ 3638+ 26577+ 62947+

UNION 730 678+ 10657+ 15033+ 22269∗ 7732∗ 60814∗ 63335+

VALUES 211 227 8247 5223 16728∗ 899667− 19289∗ 11646

NESTED 758 643 52160 55445 to− 922805− to to
SYMHASHP 403 16462 17563 1937 9494 13082 53592 28759

is used for large remote queries which we needed to break down into batches to be
accepted by the remote endpoint. However, comparing the runtimes with the FILTER
evaluation strategy, which also required use of batch processing, we measured approxi-
mately two times slower performance. It is important to notice that queries B4 to B6 re-
turned some type of error when using the strategies SERVICE, UNION, VALUES and
NESTED. These queries contain one or more non strongly bound join variables which
that not only increase the complexity of the query evaluation but also return wrong re-
sults. We observed that for query B4 using the NESTED strategy and removing all
timeouts the amount of results returned was 5,361,421 (it should return 6 results) and
it took more than 12 hours to finish (query marked with the superscript −). Query B5
also took longer using the SERVICE, NESTED and VALUES strategies, and returned
4,576,843 results, when it should return 3,274 results. The most reliable strategies were
FILTER and SYMHASHP, which managed to finish all query executions.

Table 5. Query times in ms (Sesame). The best strategy for Sesame is to use either SERVICE or
FILTER strategies.

B0 B1 B2 B3 B4 B5 B6 B7

SERVICE 77 320 1555 73 618852− to to 1968
FILTER 149 596 4340+ 4788+ 7815+ 3230+ 15746+ 7032+

UNION 260 645 6415 10807 12502 5443∗ 43648 13673
VALUES 167 153 4289 2893 8095∗ 2276∗ 8482∗ 7042

NESTED 443 385 52051 62083 to− to to 89487
SYMHASHP 101 14520 15037 1203 4662 5409 20915 21242

The results of our evaluation with the Sesame system shows a different picture com-
pared to the Fuseki test (cf. Table 5). Overall, the internal SERVICE implementation
provides the best performance for 4 out of the 8 queries. This is surprising since our
previous experiment suggested that Sesame implements the SERVICE operator as a
Nested Loop Join. However, the results in Table 5 show that the SERVICE strategy
outperforms the NESTED strategy by order of magnitudes. The results indicate that

Sesame uses some internal optimisations (e.g., based on statistics) which results in the
observed runtime difference. For the other 3 queries, the FILTER strategy showed the
fastest query answering time for queries B5 and B6 while the SYMHASHP strategy
was the fastest for query B4. It is important to note that the only evaluation strategies
that managed to finish executing were the FILTER and SYMHASHP strategies, while
we observed the same problems regarding the non strongly bound join variables: query
B4 returned 5,361,421 results in the SERVICE and NESTED strategies (the NESTED
strategy needed almost 12 hours to complete). Again, the most reliable strategies were
FILTER and SYMHASHP.

Table 6. Query times in ms (Virtuoso 7.10). The best strategy for a Virtuoso Server is a
SYMHASHP, specially for low selective patterns (queries B6 and B7).

B0 B1 B2 B3 B4 B5 B6 B7

SERVICE 45∗ 41∗ 60∗ 35∗ 61∗ 56∗ 54∗ 75∗

FILTER 159 159+ 1731 31720+ 26329+ 31324+ 68749+ 37444+

UNION 267 237+ 30904+ 72495+ 55321+ 3737∗ 7134∗ 11990+

VALUES 137 117 6611 7561 260736− 781657 to 13291−

NESTED 559 500 88240 128399 2721065∗ to to 196280
SYMHASHP 102 1905 2733 2205 5525 2306 8149 3407

Again, the results from the evaluation using the Virtuoso Open Source server are
very different from the evaluation for other stores. The best strategy when using Virtu-
oso is a SYMHASHP strategy, which is the fastest in almost all queries. Only in query
B1 the strategy VALUES and in query B2 the strategy FILTER strategy were faster.
As before, a similar situation happens when running the queries containing non strongly
bound join variables. In this case the VALUES strategy for query B4 returned 23 re-
sults, which differs from the 6 results that the FILTER and SYMHASHP strategies
return. Again, the SYMHASHP and the FILTER strategies are the only strategies that
were able to finish all query executions.

6 Related work & Conclusions

Although there is a lot of theoretical work on distributed query processing and query
planning, both in the database world [5] and in the context of the semantic Web
[10,12,7], this is indeed one of the first works that considers practical limitations of
existing SPARQL endpoints when executing already established federated query plans
using SPARQL1.1’s federated query extension. For instance, FedX [12] describes a
similar evaluation strategy to our UNION strategy (called bound join), but does not
consider the corner cases we discuss in Theorems 1+2 above. Likewise, whereas var-
ious works have addressed equivalences and optimisations for local SPARQL query
patterns [8,11,6], few have considered SERVICE patterns.

In summary, in this paper we have, firstly, illustrated that querying remote SPARQL
endpoints with SERVICE patterns is a non-trivial task due to the limitations that the

servers hosting these endpoints impose; the most common restriction is a result size
limit that prevents users from obtaining complete results to their queries. Secondly, we
have also shown some results in terms of defining equivalences for SPARQL queries
involving SERVICE patterns that may help remedy these limits in practice. Thirdly,
our evaluation should give some hints on which strategies are practically feasible in
a particular setting, depending on the data, the local SPARQL engine and the engine
running at the involved endpoints in a federated query. It is important to notice that
only the FILTER and SYMHASHP strategies returned results for all queries in all
systems. In addition, these strategies were sound, i.e. returned correct results for all
queries since they do not “inject” any new value in the remote query (instead they
either filter the unwanted results out or perform the join locally). The NESTED strategy
(along with the SERVICE strategy) not only failed to return results in several queries
but also returned incorrect results when non strongly bound join variables were present
(confirming thus the theoretical results obtained). We believe that the investigation of
the issues around executing federated SPARQL queries in practice deserves increased
attention if we seriously intend to make the the Semantic Web vision work.

7 Acknowledgements

Thanks to Aidan for his last bulletproof reading and to Martı́n for his support in finding
the missing variable bindings.

References
1. C. Buil-Aranda, M. Arenas, O. Corcho, and A. Polleres. Federating Queries in SPARQL 1.1:

Syntax, Semantics and Evaluation. J. Web Semantics, 18(1), 2012.
2. C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL Web-Querying

Infrastructure: Ready for Action? In ISWC2013, pages 277–293, 2013.
3. S. Harris and A. Seaborne. SPARQL 1.1 Query Language, January 2012.
4. T. S. Jayram, P. G. Kolaitis, and E. Vee. The containment problem for real conjunctive queries

with inequalities. In 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), pages 80–89, 2006.

5. D. Kossmann. The state of the art in distributed query processing. ACM Comput. Surv.,
32(4):422–469, 2000.

6. A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and optimization of semantic
web queries. ACM Trans. Database Syst., 38(4):25, 2013.

7. G. Montoya, M.-E. Vidal, and M. Acosta. A heuristic-based approach for planning federated
sparql queries. In Workshop on Consuming Linked Data (COLD), 2012.

8. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. TODS, 34(3),
2009.

9. E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federated Query, March 2013.
10. B. Quilitz and U. Leser. Querying distributed rdf data sources with sparql. In ESWC, volume

5021 of LNCS, pages 524–538. Springer, 2008.
11. M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimization. In

ICDT2010, Lausanne, Switzerland, Mar. 2010.
12. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization tech-

niques for federated query processing on linked data. In Proceedings of the 10th Interna-
tional Semantic Web Conference (ISWC), 2011.

A Proof for Theorem 1(i)

Proof. We now show that there is a 1:1 correpsondence between those solution map-
pings of P1 joining with (SERVICE c P2) and the ones joining with µB(P2).

The theorem trivially holds for c ∈ I \dom(ep), i.e. if c is not the IRI of a SPARQL
endpoint, cf. [1]. Otherwise, let now µ ∈ JP KG, then we know for each mapping12

µi ⊆ µ ∈ JP1KG there is a mapping µj ⊆ µ ∈ JP2KGc such that for each variable
v ∈ dom(µi) ∩ var(P2) it holds that µi(v) = µj(v) inI ∪ L: since (a) blank nodes
from the local graph queried by P1 are always disjoint with blank nodes from the remote
endpoint P2 and (b) all join variables (i.e., var(P1) ∩ var(P2)) are strongly bound in
P2, which means that indeed all v ∈ dom(µi) ∩ var(P2) are also in dom(µj).
It is now easy to see that for each such solution µj there is a solution µ′j ∈ JµB(P2)KGc

with dom(µ′j) = dom(µj) \ dom(µi) and that corresponds to µj on all variables in
dom(µ′j), which proves that JP KG ⊆ JP1KG ./ JµB(P2)KGc

On the other hand, there are no additional mappings in JµB(P2)KG that do not cor-
respond to a µj which follows from Lemma 1 and the construction of µB(P2), which
concludes the argument. ut

We leave Theorem 1(ii) – which can be shown with similar arguments – without
proof and directly skip to the proof of the more general Theorem 2.

B Proof of Theorem 2

Proof. Without making any assumptions about (strong) boundedness of variables,
again, we want to show that there is a 1:1 correpsondence between the solu-
tion mappings of P1 joining with (SERVICE c P2) and the ones joining with

(SERVICE c P
FILTER′

P1
2). Again, the theorem trivially holds for c ∈ I \ dom(ep),

i.e. if c is not the IRI of a SPARQL endpoint. Otherwise, let now µ ∈ JP KG, then we
know for each µi ⊆ µ ∈ JP1KG there is a compatible mapping µj ⊆ µ ∈ JP2KGc

such
that for each join variable v ∈ var(P1)∩ var(P2) it holds that either: (i) v 6∈ dom(µi),
(ii) v 6∈ dom(µj), or (iii) µi(v) = µj(v). We now treat these cases separately to show

that µj ∈ JP
FILTER′

P1
2 KGc

in each case:

(i): since the FILTER expression in P
FILTER′

P1
2 only considers variables in dom(µi)

the FILTER leaves bindings for v in P2 unaffected.

(ii) : the FILTER expression in P
FILTER′

P1
2 evaluates to true, due to ¬bound(v)

(iii) : the FILTER expression in P
FILTER′

P1
2 evaluates to true, due to v = µ(v)

In total, we have shown that each JP KG ⊆ JP1KG ./ JPFILTERP1
2 KGc

.
For the other direction, it is easy to see that JPFILTERP1

2 KGc
⊆ JP2KGc

, i.e. again,
the rewritten query cannot deliver any additional results on the service side, which
proved the opposite direction. ut

Again, the proof for P
UNION′

P1
2 follows similar arguments.

12 Slightly abusing notation, when we write here µi ⊆ µ, we mean that µi is a submapping of µ,
i.e. that dom(µi) ⊆ dom(µ) and that µi(v) = µ(v) for all v ∈ dom(µi).

